aoc24/day16/dijsktra.go.disabled

221 lines
5.2 KiB
Text
Raw Permalink Normal View History

2024-12-17 15:34:02 +00:00
package main
import (
"fmt"
"slices"
"git.mstar.dev/mstar/aoc24/util"
"git.mstar.dev/mstar/goutils/sliceutils"
"github.com/RyanCarrier/dijkstra/v2"
)
type NodeType int
// A crossing is a path location with 3 or 4 other paths next to it
type Node struct {
At util.Vec2
Type NodeType
Dirs []util.Vec2
Index int
}
const (
NodeInvalid NodeType = iota
NodeCrossing
NodeCorner
NodeDeadEnd
)
var (
DirUp = util.Vec2{X: 0, Y: -1}
DirRight = util.Vec2{X: 1, Y: 0}
DirDown = util.Vec2{X: 0, Y: 1}
DirLeft = util.Vec2{X: -1, Y: 0}
)
var startDir = DirRight
// Get the size of the bord
func getSize(lines []string) util.Vec2 {
return util.Vec2{X: int64(len(lines[0])), Y: int64(len(lines))}
}
// Count the paths next to a given positon
func countPathsAt(lines [][]rune, at util.Vec2) []util.Vec2 {
center := lines[at.Y][at.X]
paths := []util.Vec2{}
if center == '#' {
return paths
}
if util.SafeGet(lines, at.Up()) != '#' {
paths = append(paths, DirUp)
}
if util.SafeGet(lines, at.Down()) != '#' {
paths = append(paths, DirDown)
}
if util.SafeGet(lines, at.Left()) != '#' {
paths = append(paths, DirLeft)
}
if util.SafeGet(lines, at.Right()) != '#' {
paths = append(paths, DirRight)
}
return paths
}
func getCrossingsAndCornerPositions(lines [][]rune) []Node {
out := []Node{}
for iy, line := range lines {
for ix, char := range line {
if char == '#' {
continue
}
pos := util.Vec2{X: int64(ix), Y: int64(iy)}
dirs := countPathsAt(lines, pos)
// Crossings have 3 or more paths out
if len(dirs) >= 3 {
out = append(out, Node{pos, NodeCrossing, dirs, len(out)})
}
// Also include dead ends
if len(dirs) == 1 {
out = append(out, Node{pos, NodeDeadEnd, dirs, len(out)})
}
// Location is a corner if the paths are not opposite each other
if len(dirs) == 2 {
if !dirs[0].Mult(-1).Eq(dirs[1]) {
out = append(out, Node{pos, NodeCorner, dirs, len(out)})
}
}
}
}
return out
}
func getNeighbourNodes(nodes []Node, index int) []int {
target := nodes[index]
potential := sliceutils.Filter(nodes, func(t Node) bool {
return t.Index != index && (t.At.X == target.At.X || t.At.Y == target.At.Y)
})
hits := []Node{}
for _, dir := range target.Dirs {
switch dir {
case DirUp:
hits = append(hits, slices.MinFunc(potential, func(a, b Node) int {
if a.At.X != target.At.X || a.At.Y > target.At.Y {
return -1
}
if b.At.X != target.At.X || b.At.Y > target.At.Y {
return 1
}
return util.AbsI(
int(target.At.Y)-int(a.At.Y),
) - util.AbsI(
int(target.At.Y)-int(b.At.Y),
)
}))
case DirDown:
hits = append(hits, slices.MinFunc(potential, func(a, b Node) int {
if a.At.X != target.At.X || a.At.Y < target.At.Y {
return -1
}
if b.At.X != target.At.X || b.At.Y < target.At.Y {
return 1
}
return util.AbsI(
int(target.At.Y)-int(a.At.Y),
) - util.AbsI(
int(target.At.Y)-int(b.At.Y),
)
}))
case DirLeft:
hits = append(hits, slices.MinFunc(potential, func(a, b Node) int {
if a.At.Y != target.At.Y || a.At.X > target.At.X {
return -1
}
if b.At.Y != target.At.Y || b.At.X > target.At.X {
return 1
}
return util.AbsI(
int(target.At.X)-int(a.At.X),
) - util.AbsI(
int(target.At.X)-int(b.At.X),
)
}))
case DirRight:
hits = append(hits, slices.MinFunc(potential, func(a, b Node) int {
if a.At.Y != target.At.Y || a.At.X > target.At.X {
return -1
}
if b.At.Y != target.At.Y || b.At.X > target.At.X {
return 1
}
return util.AbsI(
int(target.At.X)-int(a.At.X),
) - util.AbsI(
int(target.At.X)-int(b.At.X),
)
}))
default:
panic("Unknown dir")
}
}
return sliceutils.Map(hits, func(t Node) int { return t.Index })
}
func addNodesToGraph(nodes []Node, graph *dijkstra.Graph) {
for i := range len(nodes) {
if err := graph.AddEmptyVertex(i); err != nil {
panic(err)
}
}
for _, node := range nodes {
for _, n := range getNeighbourNodes(nodes, node.Index) {
if err := graph.AddArc(node.Index, n, node.At.Add(nodes[n].At.Mult(-1)).LenSquared()); err != nil {
panic(err)
}
}
}
}
func findEnd(lines [][]rune) util.Vec2 {
for iy, line := range lines {
for ix, char := range line {
if char == 'E' {
return util.Vec2{X: int64(ix), Y: int64(iy)}
}
}
}
return util.Vec2{X: -1, Y: -1}
}
func findStart(lines [][]rune) util.Vec2 {
for iy, line := range lines {
for ix, char := range line {
if char == 'S' {
return util.Vec2{X: int64(ix), Y: int64(iy)}
}
}
}
return util.Vec2{X: -1, Y: -1}
}
func main() {
inputLines := util.FileContentToNonEmptyLines(util.LoadFileFromArgs())
// size := getSize(inputLines)
inputLineChars := sliceutils.Map(inputLines, func(t string) []rune { return []rune(t) })
nodes := getCrossingsAndCornerPositions(inputLineChars)
// fmt.Println(nodes)
// slices.MaxFunc(x S, cmp func(a E, b E) int)
graph := dijkstra.NewGraph()
addNodesToGraph(nodes, &graph)
startVec := findStart(inputLineChars)
endVec := findEnd(inputLineChars)
startI := slices.IndexFunc(nodes, func(e Node) bool { return e.At == startVec })
endI := slices.IndexFunc(nodes, func(e Node) bool { return e.At == endVec })
path, err := graph.Shortest(startI, endI)
fmt.Println(path, err)
}