moved a freetype source file into the project and optimized it for the given purpose, only upload rendered text rectangle to the texture

This commit is contained in:
Thomas Friedel 2018-01-29 13:14:42 +01:00
parent 79bf4f6b5f
commit 8a66ff2166
2 changed files with 360 additions and 13 deletions

335
freetype.go Normal file
View file

@ -0,0 +1,335 @@
// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
// The freetype package provides a convenient API to draw text onto an image.
// Use the freetype/raster and freetype/truetype packages for lower level
// control over rasterization and TrueType parsing.
package canvas
import (
"errors"
"image"
"image/draw"
"github.com/golang/freetype/raster"
"github.com/golang/freetype/truetype"
"golang.org/x/image/font"
"golang.org/x/image/math/fixed"
)
// These constants determine the size of the glyph cache. The cache is keyed
// primarily by the glyph index modulo nGlyphs, and secondarily by sub-pixel
// position for the mask image. Sub-pixel positions are quantized to
// nXFractions possible values in both the x and y directions.
const (
nGlyphs = 256
nXFractions = 4
nYFractions = 1
)
// An entry in the glyph cache is keyed explicitly by the glyph index and
// implicitly by the quantized x and y fractional offset. It maps to a mask
// image and an offset.
type cacheEntry struct {
valid bool
glyph truetype.Index
advanceWidth fixed.Int26_6
mask *image.Alpha
offset image.Point
}
// A Context holds the state for drawing text in a given font and size.
type frContext struct {
r *raster.Rasterizer
f *truetype.Font
glyphBuf truetype.GlyphBuf
// clip is the clip rectangle for drawing.
clip image.Rectangle
// dst and src are the destination and source images for drawing.
dst draw.Image
src image.Image
// fontSize and dpi are used to calculate scale. scale is the number of
// 26.6 fixed point units in 1 em. hinting is the hinting policy.
fontSize, dpi float64
scale fixed.Int26_6
hinting font.Hinting
// cache is the glyph cache.
cache [nGlyphs * nXFractions * nYFractions]cacheEntry
}
// drawContour draws the given closed contour with the given offset.
func (c *frContext) drawContour(ps []truetype.Point, dx, dy fixed.Int26_6) {
if len(ps) == 0 {
return
}
// The low bit of each point's Flags value is whether the point is on the
// curve. Truetype fonts only have quadratic Bézier curves, not cubics.
// Thus, two consecutive off-curve points imply an on-curve point in the
// middle of those two.
//
// See http://chanae.walon.org/pub/ttf/ttf_glyphs.htm for more details.
// ps[0] is a truetype.Point measured in FUnits and positive Y going
// upwards. start is the same thing measured in fixed point units and
// positive Y going downwards, and offset by (dx, dy).
start := fixed.Point26_6{
X: dx + ps[0].X,
Y: dy - ps[0].Y,
}
others := []truetype.Point(nil)
if ps[0].Flags&0x01 != 0 {
others = ps[1:]
} else {
last := fixed.Point26_6{
X: dx + ps[len(ps)-1].X,
Y: dy - ps[len(ps)-1].Y,
}
if ps[len(ps)-1].Flags&0x01 != 0 {
start = last
others = ps[:len(ps)-1]
} else {
start = fixed.Point26_6{
X: (start.X + last.X) / 2,
Y: (start.Y + last.Y) / 2,
}
others = ps
}
}
c.r.Start(start)
q0, on0 := start, true
for _, p := range others {
q := fixed.Point26_6{
X: dx + p.X,
Y: dy - p.Y,
}
on := p.Flags&0x01 != 0
if on {
if on0 {
c.r.Add1(q)
} else {
c.r.Add2(q0, q)
}
} else {
if on0 {
// No-op.
} else {
mid := fixed.Point26_6{
X: (q0.X + q.X) / 2,
Y: (q0.Y + q.Y) / 2,
}
c.r.Add2(q0, mid)
}
}
q0, on0 = q, on
}
// Close the curve.
if on0 {
c.r.Add1(start)
} else {
c.r.Add2(q0, start)
}
}
// rasterize returns the advance width, glyph mask and integer-pixel offset
// to render the given glyph at the given sub-pixel offsets.
// The 26.6 fixed point arguments fx and fy must be in the range [0, 1).
func (c *frContext) rasterize(glyph truetype.Index, fx, fy fixed.Int26_6) (
fixed.Int26_6, *image.Alpha, image.Point, error) {
if err := c.glyphBuf.Load(c.f, c.scale, glyph, c.hinting); err != nil {
return 0, nil, image.Point{}, err
}
// Calculate the integer-pixel bounds for the glyph.
xmin := int(fx+c.glyphBuf.Bounds.Min.X) >> 6
ymin := int(fy-c.glyphBuf.Bounds.Max.Y) >> 6
xmax := int(fx+c.glyphBuf.Bounds.Max.X+0x3f) >> 6
ymax := int(fy-c.glyphBuf.Bounds.Min.Y+0x3f) >> 6
if xmin > xmax || ymin > ymax {
return 0, nil, image.Point{}, errors.New("freetype: negative sized glyph")
}
// A TrueType's glyph's nodes can have negative co-ordinates, but the
// rasterizer clips anything left of x=0 or above y=0. xmin and ymin are
// the pixel offsets, based on the font's FUnit metrics, that let a
// negative co-ordinate in TrueType space be non-negative in rasterizer
// space. xmin and ymin are typically <= 0.
fx -= fixed.Int26_6(xmin << 6)
fy -= fixed.Int26_6(ymin << 6)
// Rasterize the glyph's vectors.
c.r.Clear()
e0 := 0
for _, e1 := range c.glyphBuf.Ends {
c.drawContour(c.glyphBuf.Points[e0:e1], fx, fy)
e0 = e1
}
a := image.NewAlpha(image.Rect(0, 0, xmax-xmin, ymax-ymin))
c.r.Rasterize(raster.NewAlphaSrcPainter(a))
return c.glyphBuf.AdvanceWidth, a, image.Point{xmin, ymin}, nil
}
// glyph returns the advance width, glyph mask and integer-pixel offset to
// render the given glyph at the given sub-pixel point. It is a cache for the
// rasterize method. Unlike rasterize, p's co-ordinates do not have to be in
// the range [0, 1).
func (c *frContext) glyph(glyph truetype.Index, p fixed.Point26_6) (
fixed.Int26_6, *image.Alpha, image.Point, error) {
// Split p.X and p.Y into their integer and fractional parts.
ix, fx := int(p.X>>6), p.X&0x3f
iy, fy := int(p.Y>>6), p.Y&0x3f
// Calculate the index t into the cache array.
tg := int(glyph) % nGlyphs
tx := int(fx) / (64 / nXFractions)
ty := int(fy) / (64 / nYFractions)
t := ((tg*nXFractions)+tx)*nYFractions + ty
// Check for a cache hit.
if e := c.cache[t]; e.valid && e.glyph == glyph {
return e.advanceWidth, e.mask, e.offset.Add(image.Point{ix, iy}), nil
}
// Rasterize the glyph and put the result into the cache.
advanceWidth, mask, offset, err := c.rasterize(glyph, fx, fy)
if err != nil {
return 0, nil, image.Point{}, err
}
c.cache[t] = cacheEntry{true, glyph, advanceWidth, mask, offset}
return advanceWidth, mask, offset.Add(image.Point{ix, iy}), nil
}
const maxInt = int(^uint(0) >> 1)
// DrawString draws s at p and returns p advanced by the text extent. The text
// is placed so that the left edge of the em square of the first character of s
// and the baseline intersect at p. The majority of the affected pixels will be
// above and to the right of the point, but some may be below or to the left.
// For example, drawing a string that starts with a 'J' in an italic font may
// affect pixels below and left of the point.
//
// p is a fixed.Point26_6 and can therefore represent sub-pixel positions.
func (c *frContext) drawString(s string, p fixed.Point26_6) (fixed.Point26_6, image.Rectangle, error) {
if c.f == nil {
return fixed.Point26_6{}, image.Rectangle{}, errors.New("freetype: DrawText called with a nil font")
}
bounds := image.Rectangle{Min: image.Point{X: maxInt, Y: maxInt}}
prev, hasPrev := truetype.Index(0), false
for _, rune := range s {
index := c.f.Index(rune)
if hasPrev {
kern := c.f.Kern(c.scale, prev, index)
if c.hinting != font.HintingNone {
kern = (kern + 32) &^ 63
}
p.X += kern
}
advanceWidth, mask, offset, err := c.glyph(index, p)
if err != nil {
return fixed.Point26_6{}, image.Rectangle{}, err
}
p.X += advanceWidth
glyphRect := mask.Bounds().Add(offset)
if glyphRect.Min.X < bounds.Min.X {
bounds.Min.X = glyphRect.Min.X
}
if glyphRect.Min.Y < bounds.Min.Y {
bounds.Min.Y = glyphRect.Min.Y
}
if glyphRect.Max.X > bounds.Max.X {
bounds.Max.X = glyphRect.Max.X
}
if glyphRect.Max.Y > bounds.Max.Y {
bounds.Max.Y = glyphRect.Max.Y
}
dr := c.clip.Intersect(glyphRect)
if !dr.Empty() {
mp := image.Point{0, dr.Min.Y - glyphRect.Min.Y}
draw.DrawMask(c.dst, dr, c.src, image.ZP, mask, mp, draw.Src)
}
prev, hasPrev = index, true
}
bounds = c.clip.Intersect(bounds)
return p, bounds, nil
}
// recalc recalculates scale and bounds values from the font size, screen
// resolution and font metrics, and invalidates the glyph cache.
func (c *frContext) recalc() {
c.scale = fixed.Int26_6(c.fontSize * c.dpi * (64.0 / 72.0))
if c.f == nil {
c.r.SetBounds(0, 0)
} else {
// Set the rasterizer's bounds to be big enough to handle the largest glyph.
b := c.f.Bounds(c.scale)
xmin := +int(b.Min.X) >> 6
ymin := -int(b.Max.Y) >> 6
xmax := +int(b.Max.X+63) >> 6
ymax := -int(b.Min.Y-63) >> 6
c.r.SetBounds(xmax-xmin, ymax-ymin)
}
for i := range c.cache {
c.cache[i] = cacheEntry{}
}
}
// SetDPI sets the screen resolution in dots per inch.
func (c *frContext) setDPI(dpi float64) {
if c.dpi == dpi {
return
}
c.dpi = dpi
c.recalc()
}
// SetFont sets the font used to draw text.
func (c *frContext) setFont(f *truetype.Font) {
if c.f == f {
return
}
c.f = f
c.recalc()
}
// SetFontSize sets the font size in points (as in "a 12 point font").
func (c *frContext) setFontSize(fontSize float64) {
if c.fontSize == fontSize {
return
}
c.fontSize = fontSize
c.recalc()
}
// SetHinting sets the hinting policy.
func (c *frContext) setHinting(hinting font.Hinting) {
c.hinting = hinting
for i := range c.cache {
c.cache[i] = cacheEntry{}
}
}
// SetDst sets the destination image for draw operations.
func (c *frContext) setDst(dst draw.Image) {
c.dst = dst
}
// SetSrc sets the source image for draw operations. This is typically an
// image.Uniform.
func (c *frContext) setSrc(src image.Image) {
c.src = src
}
// SetClip sets the clip rectangle for drawing.
func (c *frContext) setClip(clip image.Rectangle) {
c.clip = clip
}
// TODO(nigeltao): implement Context.SetGamma.
// NewContext creates a new Context.
func newFRContext() *frContext {
return &frContext{
r: raster.NewRasterizer(0, 0),
fontSize: 12,
dpi: 72,
scale: 12 << 6,
}
}

38
text.go
View file

@ -11,7 +11,7 @@ import (
"golang.org/x/image/math/fixed"
)
var fontRenderingContext = freetype.NewContext()
var fontRenderingContext = newFRContext()
type Font struct {
font *truetype.Font
@ -56,30 +56,42 @@ func (cv *Canvas) FillText(str string, x, y float32) {
gli.TexParameteri(gl_TEXTURE_2D, gl_TEXTURE_MAG_FILTER, gl_NEAREST)
gli.TexParameteri(gl_TEXTURE_2D, gl_TEXTURE_WRAP_S, gl_CLAMP_TO_EDGE)
gli.TexParameteri(gl_TEXTURE_2D, gl_TEXTURE_WRAP_T, gl_CLAMP_TO_EDGE)
gli.TexImage2D(gl_TEXTURE_2D, 0, gl_RGBA, int32(cv.w), int32(cv.h), 0, gl_RGBA, gl_UNSIGNED_BYTE, nil)
}
for i := range cv.text.target.Pix {
cv.text.target.Pix[i] = 0
}
fontRenderingContext.SetFont(cv.text.font.font)
fontRenderingContext.SetFontSize(float64(cv.text.size))
fontRenderingContext.SetSrc(image.NewUniform(colorGLToGo(cv.fill.r, cv.fill.g, cv.fill.b, cv.fill.a)))
fontRenderingContext.SetDst(cv.text.target)
fontRenderingContext.SetClip(cv.text.target.Bounds())
fontRenderingContext.DrawString(str, fixed.Point26_6{X: fixed.Int26_6(x*64 + 0.5), Y: fixed.Int26_6(y*64 + 0.5)})
fontRenderingContext.setFont(cv.text.font.font)
fontRenderingContext.setFontSize(float64(cv.text.size))
fontRenderingContext.setSrc(image.NewUniform(colorGLToGo(cv.fill.r, cv.fill.g, cv.fill.b, cv.fill.a)))
fontRenderingContext.setDst(cv.text.target)
fontRenderingContext.setClip(cv.text.target.Bounds())
_, bounds, _ := fontRenderingContext.drawString(str, fixed.Point26_6{X: fixed.Int26_6(x*64 + 0.5), Y: fixed.Int26_6(y*64 + 0.5)})
subImg := cv.text.target.SubImage(bounds).(*image.RGBA)
gli.BlendFunc(gl_ONE, gl_ONE_MINUS_SRC_ALPHA)
gli.ActiveTexture(gl_TEXTURE0)
gli.BindTexture(gl_TEXTURE_2D, cv.text.tex)
gli.TexImage2D(gl_TEXTURE_2D, 0, gl_RGBA, int32(cv.w), int32(cv.h), 0, gl_RGBA, gl_UNSIGNED_BYTE, gli.Ptr(&cv.text.target.Pix[0]))
for y, w, h := 0, bounds.Dx(), bounds.Dy(); y < h; y++ {
off := y * subImg.Stride
pix := subImg.Pix
gli.TexSubImage2D(gl_TEXTURE_2D, 0, 0, int32(cv.h-1-y), int32(w), 1, gl_RGBA, gl_UNSIGNED_BYTE, gli.Ptr(&pix[off]))
for b := w * 4; b > 0; b-- {
pix[off] = 0
off++
}
}
gli.UseProgram(tr.id)
gli.Uniform1i(tr.image, 0)
gli.BindBuffer(gl_ARRAY_BUFFER, buf)
data := [16]float32{-1, -1, -1, 1, 1, 1, 1, -1, 0, 1, 0, 0, 1, 0, 1, 1}
x0 := float32(bounds.Min.X) / cv.fw
y0 := float32(bounds.Min.Y) / cv.fh
x1 := float32(bounds.Max.X) / cv.fw
y1 := float32(bounds.Max.Y) / cv.fh
data := [16]float32{x0*2 - 1, -y0*2 + 1, x0*2 - 1, -y1*2 + 1, x1*2 - 1, -y1*2 + 1, x1*2 - 1, -y0*2 + 1,
0, 1, 0, 1 - (y1 - y0), x1 - x0, 1 - (y1 - y0), x1 - x0, 1}
gli.BufferData(gl_ARRAY_BUFFER, len(data)*4, unsafe.Pointer(&data[0]), gl_STREAM_DRAW)
gli.VertexAttribPointer(tr.vertex, 2, gl_FLOAT, false, 0, nil)