package canvas import ( "math" "unsafe" "github.com/barnex/fmath" "github.com/tfriedel6/lm" ) func (cv *Canvas) BeginPath() { if cv.linePath == nil { cv.linePath = make([]pathPoint, 0, 100) } if cv.polyPath == nil { cv.polyPath = make([]pathPoint, 0, 100) } cv.linePath = cv.linePath[:0] cv.polyPath = cv.polyPath[:0] } func isSamePoint(a, b lm.Vec2, maxDist float32) bool { return fmath.Abs(b[0]-a[0]) <= maxDist && fmath.Abs(b[1]-a[1]) <= maxDist } func (cv *Canvas) MoveTo(x, y float32) { tf := cv.tf(lm.Vec2{x, y}) if len(cv.linePath) > 0 && isSamePoint(cv.linePath[len(cv.linePath)-1].tf, tf, 0.1) { return } cv.linePath = append(cv.linePath, pathPoint{pos: lm.Vec2{x, y}, tf: tf, move: true}) cv.polyPath = append(cv.polyPath, pathPoint{pos: lm.Vec2{x, y}, tf: tf, move: true}) } func (cv *Canvas) LineTo(x, y float32) { cv.strokeLineTo(x, y) cv.fillLineTo(x, y) } func (cv *Canvas) strokeLineTo(x, y float32) { if len(cv.linePath) > 0 && isSamePoint(cv.linePath[len(cv.linePath)-1].tf, cv.tf(lm.Vec2{x, y}), 0.1) { return } if len(cv.linePath) == 0 { cv.linePath = append(cv.linePath, pathPoint{pos: lm.Vec2{x, y}, tf: cv.tf(lm.Vec2{x, y}), move: true}) return } if len(cv.state.lineDash) > 0 { lp := cv.linePath[len(cv.linePath)-1].pos tp := lm.Vec2{x, y} v := tp.Sub(lp) vl := v.Len() prev := cv.state.lineDashOffset for vl > 0 { draw := cv.state.lineDashPoint%2 == 0 p := tp cv.state.lineDashOffset += vl if cv.state.lineDashOffset > cv.state.lineDash[cv.state.lineDashPoint] { cv.state.lineDashOffset = 0 dl := cv.state.lineDash[cv.state.lineDashPoint] - prev p = lp.Add(v.MulF(dl / vl)) vl -= dl cv.state.lineDashPoint++ cv.state.lineDashPoint %= len(cv.state.lineDash) prev = 0 } else { vl = 0 } if draw { cv.linePath[len(cv.linePath)-1].next = cv.tf(p) cv.linePath[len(cv.linePath)-1].attach = true cv.linePath = append(cv.linePath, pathPoint{pos: p, tf: cv.tf(p), move: false}) } else { cv.linePath = append(cv.linePath, pathPoint{pos: p, tf: cv.tf(p), move: true}) } lp = p v = tp.Sub(lp) } } else { tf := cv.tf(lm.Vec2{x, y}) cv.linePath[len(cv.linePath)-1].next = tf cv.linePath[len(cv.linePath)-1].attach = true cv.linePath = append(cv.linePath, pathPoint{pos: lm.Vec2{x, y}, tf: tf, move: false}) } } func (cv *Canvas) fillLineTo(x, y float32) { if len(cv.polyPath) > 0 && isSamePoint(cv.polyPath[len(cv.polyPath)-1].tf, cv.tf(lm.Vec2{x, y}), 0.1) { return } if len(cv.polyPath) == 0 { cv.polyPath = append(cv.polyPath, pathPoint{pos: lm.Vec2{x, y}, tf: cv.tf(lm.Vec2{x, y}), move: true}) return } tf := cv.tf(lm.Vec2{x, y}) cv.polyPath[len(cv.polyPath)-1].next = tf cv.polyPath[len(cv.polyPath)-1].attach = true cv.polyPath = append(cv.polyPath, pathPoint{pos: lm.Vec2{x, y}, tf: tf, move: false}) } func (cv *Canvas) Arc(x, y, radius, startAngle, endAngle float32, anticlockwise bool) { startAngle = fmath.Mod(startAngle, math.Pi*2) if startAngle < 0 { startAngle += math.Pi * 2 } endAngle = fmath.Mod(endAngle, math.Pi*2) if endAngle < 0 { endAngle += math.Pi * 2 } if !anticlockwise && endAngle <= startAngle { endAngle += math.Pi * 2 } else if anticlockwise && endAngle >= startAngle { endAngle -= math.Pi * 2 } tr := cv.tf(lm.Vec2{radius, radius}) step := 6 / fmath.Max(tr[0], tr[1]) if step > 0.8 { step = 0.8 } else if step < 0.05 { step = 0.05 } if anticlockwise { for a := startAngle; a > endAngle; a -= step { s, c := fmath.Sincos(a) cv.LineTo(x+radius*c, y+radius*s) } } else { for a := startAngle; a < endAngle; a += step { s, c := fmath.Sincos(a) cv.LineTo(x+radius*c, y+radius*s) } } s, c := fmath.Sincos(endAngle) cv.LineTo(x+radius*c, y+radius*s) } func (cv *Canvas) ArcTo(x1, y1, x2, y2, radius float32) { if len(cv.linePath) == 0 { return } p0, p1, p2 := cv.linePath[len(cv.linePath)-1].pos, lm.Vec2{x1, y1}, lm.Vec2{x2, y2} v0, v1 := p0.Sub(p1).Norm(), p2.Sub(p1).Norm() angle := fmath.Acos(v0.Dot(v1)) // should be in the range [0-pi]. if parallel, use a straight line if angle <= 0 || angle >= math.Pi { cv.LineTo(x2, y2) return } // cv are the vectors orthogonal to the lines that point to the center of the circle cv0 := lm.Vec2{-v0[1], v0[0]} cv1 := lm.Vec2{v1[1], -v1[0]} x := cv1.Sub(cv0).Div(v0.Sub(v1))[0] * radius if x < 0 { cv0 = cv0.MulF(-1) cv1 = cv1.MulF(-1) } center := p1.Add(v0.MulF(fmath.Abs(x))).Add(cv0.MulF(radius)) a0, a1 := cv0.MulF(-1).Atan2(), cv1.MulF(-1).Atan2() cv.Arc(center[0], center[1], radius, a0, a1, x > 0) } func (cv *Canvas) QuadraticCurveTo(x1, y1, x2, y2 float32) { if len(cv.linePath) == 0 { return } p0 := cv.linePath[len(cv.linePath)-1].pos p1 := lm.Vec2{x1, y1} p2 := lm.Vec2{x2, y2} v0 := p1.Sub(p0) v1 := p2.Sub(p1) tp0, tp1, tp2 := cv.tf(p0), cv.tf(p1), cv.tf(p2) tv0 := tp1.Sub(tp0) tv1 := tp2.Sub(tp1) step := 1 / fmath.Max(fmath.Max(tv0[0], tv0[1]), fmath.Max(tv1[0], tv1[1])) if step > 0.1 { step = 0.1 } else if step < 0.005 { step = 0.005 } for r := float32(0); r < 1; r += step { i0 := v0.MulF(r).Add(p0) i1 := v1.MulF(r).Add(p1) p := i1.Sub(i0).MulF(r).Add(i0) cv.LineTo(p[0], p[1]) } } func (cv *Canvas) BezierCurveTo(x1, y1, x2, y2, x3, y3 float32) { if len(cv.linePath) == 0 { return } p0 := cv.linePath[len(cv.linePath)-1].pos p1 := lm.Vec2{x1, y1} p2 := lm.Vec2{x2, y2} p3 := lm.Vec2{x3, y3} v0 := p1.Sub(p0) v1 := p2.Sub(p1) v2 := p3.Sub(p2) tp0, tp1, tp2, tp3 := cv.tf(p0), cv.tf(p1), cv.tf(p2), cv.tf(p3) tv0 := tp1.Sub(tp0) tv1 := tp2.Sub(tp1) tv2 := tp3.Sub(tp2) step := 1 / fmath.Max(fmath.Max(fmath.Max(tv0[0], tv0[1]), fmath.Max(tv1[0], tv1[1])), fmath.Max(tv2[0], tv2[1])) if step > 0.1 { step = 0.1 } else if step < 0.005 { step = 0.005 } for r := float32(0); r < 1; r += step { i0 := v0.MulF(r).Add(p0) i1 := v1.MulF(r).Add(p1) i2 := v2.MulF(r).Add(p2) iv0 := i1.Sub(i0) iv1 := i2.Sub(i1) j0 := iv0.MulF(r).Add(i0) j1 := iv1.MulF(r).Add(i1) p := j1.Sub(j0).MulF(r).Add(j0) cv.LineTo(p[0], p[1]) } } func (cv *Canvas) ClosePath() { if len(cv.linePath) < 2 { return } if isSamePoint(cv.linePath[len(cv.linePath)-1].tf, cv.linePath[0].tf, 0.1) { return } cv.LineTo(cv.linePath[0].pos[0], cv.linePath[0].pos[1]) cv.linePath[len(cv.linePath)-1].next = cv.linePath[0].tf cv.polyPath[len(cv.polyPath)-1].next = cv.polyPath[0].tf } func (cv *Canvas) Stroke() { if len(cv.linePath) == 0 { return } cv.activate() gli.ColorMask(false, false, false, false) gli.StencilFunc(gl_ALWAYS, 1, 0xFF) gli.StencilOp(gl_KEEP, gl_KEEP, gl_REPLACE) gli.StencilMask(0x01) gli.BindBuffer(gl_ARRAY_BUFFER, buf) var buf [1000]float32 tris := buf[:0] tris = append(tris, 0, 0, cv.fw, 0, cv.fw, cv.fh, 0, 0, cv.fw, cv.fh, 0, cv.fh) start := true var p0 lm.Vec2 for _, p := range cv.linePath { if p.move { p0 = p.tf start = true continue } p1 := p.tf v0 := p1.Sub(p0).Norm() v1 := lm.Vec2{v0[1], -v0[0]}.MulF(cv.state.lineWidth * 0.5) v0 = v0.MulF(cv.state.lineWidth * 0.5) lp0 := p0.Add(v1) lp1 := p1.Add(v1) lp2 := p0.Sub(v1) lp3 := p1.Sub(v1) if start { switch cv.state.lineEnd { case Butt: // no need to do anything case Square: lp0 = lp0.Sub(v0) lp2 = lp2.Sub(v0) case Round: tris = cv.addCircleTris(p0, cv.state.lineWidth*0.5, tris) } } if !p.attach { switch cv.state.lineEnd { case Butt: // no need to do anything case Square: lp1 = lp1.Add(v0) lp3 = lp3.Add(v0) case Round: tris = cv.addCircleTris(p1, cv.state.lineWidth*0.5, tris) } } tris = append(tris, lp0[0], lp0[1], lp1[0], lp1[1], lp3[0], lp3[1], lp0[0], lp0[1], lp3[0], lp3[1], lp2[0], lp2[1]) if p.attach { tris = cv.lineJoint(p, p0, p1, p.next, lp0, lp1, lp2, lp3, tris) } p0 = p1 start = false } gli.BufferData(gl_ARRAY_BUFFER, len(tris)*4, unsafe.Pointer(&tris[0]), gl_STREAM_DRAW) gli.UseProgram(sr.id) gli.Uniform4f(sr.color, 0, 0, 0, 0) gli.Uniform2f(sr.canvasSize, cv.fw, cv.fh) gli.ColorMask(false, false, false, false) gli.EnableVertexAttribArray(sr.vertex) gli.VertexAttribPointer(sr.vertex, 2, gl_FLOAT, false, 0, nil) gli.DrawArrays(gl_TRIANGLES, 6, int32(len(tris)/2-6)) gli.DisableVertexAttribArray(sr.vertex) gli.ColorMask(true, true, true, true) gli.StencilFunc(gl_EQUAL, 1, 0xFF) gli.StencilMask(0xFF) vertex := cv.useShader(&cv.state.stroke) gli.EnableVertexAttribArray(vertex) gli.VertexAttribPointer(vertex, 2, gl_FLOAT, false, 0, nil) gli.DrawArrays(gl_TRIANGLES, 0, 6) gli.DisableVertexAttribArray(vertex) gli.StencilOp(gl_KEEP, gl_KEEP, gl_KEEP) gli.StencilFunc(gl_EQUAL, 0, 0xFF) gli.StencilMask(0x01) gli.Clear(gl_STENCIL_BUFFER_BIT) gli.StencilMask(0xFF) } func (cv *Canvas) lineJoint(p pathPoint, p0, p1, p2, l0p0, l0p1, l0p2, l0p3 lm.Vec2, tris []float32) []float32 { v2 := p1.Sub(p2).Norm() v3 := lm.Vec2{v2[1], -v2[0]}.MulF(cv.state.lineWidth * 0.5) switch cv.state.lineJoin { case Miter: l1p0 := p2.Sub(v3) l1p1 := p1.Sub(v3) l1p2 := p2.Add(v3) l1p3 := p1.Add(v3) var ip0, ip1 lm.Vec2 if l0p1.Sub(l1p1).LenSqr() < 0.000000001 { ip0 = l0p1.Sub(l1p1).MulF(0.5).Add(l1p1) } else { ip0, _, _ = lineIntersection(l0p0, l0p1, l1p1, l1p0) } if l0p3.Sub(l1p3).LenSqr() < 0.000000001 { ip1 = l0p3.Sub(l1p3).MulF(0.5).Add(l1p3) } else { ip1, _, _ = lineIntersection(l0p2, l0p3, l1p3, l1p2) } tris = append(tris, p1[0], p1[1], l0p1[0], l0p1[1], ip0[0], ip0[1], p1[0], p1[1], ip0[0], ip0[1], l1p1[0], l1p1[1], p1[0], p1[1], l1p3[0], l1p3[1], ip1[0], ip1[1], p1[0], p1[1], ip1[0], ip1[1], l0p3[0], l0p3[1]) case Bevel: l1p1 := p1.Sub(v3) l1p3 := p1.Add(v3) tris = append(tris, p1[0], p1[1], l0p1[0], l0p1[1], l1p1[0], l1p1[1], p1[0], p1[1], l1p3[0], l1p3[1], l0p3[0], l0p3[1]) case Round: tris = cv.addCircleTris(p1, cv.state.lineWidth*0.5, tris) } return tris } func (cv *Canvas) addCircleTris(center lm.Vec2, radius float32, tris []float32) []float32 { p0 := lm.Vec2{center[0], center[1] + radius} step := 6 / radius if step > 0.8 { step = 0.8 } else if step < 0.05 { step = 0.05 } for angle := step; angle <= math.Pi*2+step; angle += step { s, c := fmath.Sincos(angle) p1 := lm.Vec2{center[0] + s*radius, center[1] + c*radius} tris = append(tris, center[0], center[1], p0[0], p0[1], p1[0], p1[1]) p0 = p1 } return tris } func lineIntersection(a0, a1, b0, b1 lm.Vec2) (lm.Vec2, float32, float32) { va := a1.Sub(a0) vb := b1.Sub(b0) if (va[0] == 0 && vb[0] == 0) || (va[1] == 0 && vb[1] == 0) || (va[0] == 0 && va[1] == 0) || (vb[0] == 0 && vb[1] == 0) { return lm.Vec2{}, float32(math.Inf(1)), float32(math.Inf(1)) } p := (vb[1]*(a0[0]-b0[0]) - a0[1]*vb[0] + b0[1]*vb[0]) / (va[1]*vb[0] - va[0]*vb[1]) var q float32 if vb[0] == 0 { q = (a0[1] + p*va[1] - b0[1]) / vb[1] } else { q = (a0[0] + p*va[0] - b0[0]) / vb[0] } return a0.Add(va.MulF(p)), p, q } func (cv *Canvas) Fill() { lastMove := 0 for i, p := range cv.polyPath { if p.move { lastMove = i } } path := cv.polyPath[lastMove:] if len(path) < 3 { return } path = cv.cutIntersections(path) cv.activate() gli.BindBuffer(gl_ARRAY_BUFFER, buf) var buf [1000]float32 tris := triangulatePath(path, buf[:0]) gli.BufferData(gl_ARRAY_BUFFER, len(tris)*4, unsafe.Pointer(&tris[0]), gl_STREAM_DRAW) vertex := cv.useShader(&cv.state.fill) gli.EnableVertexAttribArray(vertex) gli.VertexAttribPointer(vertex, 2, gl_FLOAT, false, 0, nil) gli.DrawArrays(gl_TRIANGLES, 0, int32(len(tris)/2)) gli.DisableVertexAttribArray(vertex) } func (cv *Canvas) Clip() { if len(cv.polyPath) < 3 { return } cv.clip(cv.polyPath) } func (cv *Canvas) clip(path []pathPoint) { cv.activate() gli.BindBuffer(gl_ARRAY_BUFFER, buf) var buf [1000]float32 tris := buf[:0] tris = append(tris, 0, 0, cv.fw, 0, cv.fw, cv.fh, 0, 0, cv.fw, cv.fh, 0, cv.fh) tris = triangulatePath(path, tris) gli.BufferData(gl_ARRAY_BUFFER, len(tris)*4, unsafe.Pointer(&tris[0]), gl_STREAM_DRAW) gli.VertexAttribPointer(sr.vertex, 2, gl_FLOAT, false, 0, nil) gli.UseProgram(sr.id) gli.Uniform4f(sr.color, 1, 1, 1, 1) gli.Uniform2f(sr.canvasSize, cv.fw, cv.fh) gli.EnableVertexAttribArray(sr.vertex) gli.ColorMask(false, false, false, false) gli.StencilFunc(gl_ALWAYS, 2, 0xFF) gli.StencilOp(gl_KEEP, gl_KEEP, gl_REPLACE) gli.StencilMask(0x02) gli.Clear(gl_STENCIL_BUFFER_BIT) gli.DrawArrays(gl_TRIANGLES, 0, 6) gli.StencilFunc(gl_ALWAYS, 0, 0xFF) gli.DrawArrays(gl_TRIANGLES, 6, int32(len(tris)/2-6)) gli.DisableVertexAttribArray(sr.vertex) gli.ColorMask(true, true, true, true) gli.StencilOp(gl_KEEP, gl_KEEP, gl_KEEP) gli.StencilMask(0xFF) gli.StencilFunc(gl_EQUAL, 0, 0xFF) cv.state.clip = make([]pathPoint, len(cv.polyPath)) copy(cv.state.clip, cv.polyPath) }