package canvas import ( "math" ) type Path2D struct { cv *Canvas p []pathPoint move vec cwSum float64 } type pathPoint struct { pos vec next vec flags pathPointFlag } type pathPointFlag uint8 const ( pathMove pathPointFlag = 1 << iota pathAttach pathIsRect pathIsConvex pathIsClockwise pathSelfIntersects ) // NewPath2D creates a new Path2D and returns it func (cv *Canvas) NewPath2D() *Path2D { return &Path2D{cv: cv, p: make([]pathPoint, 0, 20)} } // func (p *Path2D) AddPath(p2 *Path2D) { // } // MoveTo (see equivalent function on canvas type) func (p *Path2D) MoveTo(x, y float64) { if len(p.p) > 0 && isSamePoint(p.p[len(p.p)-1].pos, vec{x, y}, 0.1) { return } p.p = append(p.p, pathPoint{pos: vec{x, y}, flags: pathMove}) // todo more flags probably p.cwSum = 0 p.move = vec{x, y} } // LineTo (see equivalent function on canvas type) func (p *Path2D) LineTo(x, y float64) { p.lineTo(x, y, true) } func (p *Path2D) lineTo(x, y float64, checkSelfIntersection bool) { count := len(p.p) if count > 0 && isSamePoint(p.p[len(p.p)-1].pos, vec{x, y}, 0.1) { return } if count == 0 { p.MoveTo(x, y) return } prev := &p.p[count-1] prev.next = vec{x, y} prev.flags |= pathAttach p.p = append(p.p, pathPoint{pos: vec{x, y}}) newp := &p.p[count] px, py := prev.pos[0], prev.pos[1] p.cwSum += (x - px) * (y + py) cwTotal := p.cwSum cwTotal += (p.move[0] - x) * (p.move[1] + y) if cwTotal <= 0 { newp.flags |= pathIsClockwise } if prev.flags&pathSelfIntersects > 0 { newp.flags |= pathSelfIntersects } if len(p.p) < 4 || Performance.AssumeConvex { newp.flags |= pathIsConvex } else if prev.flags&pathIsConvex > 0 { cuts := false if checkSelfIntersection && !Performance.IgnoreSelfIntersections { b0, b1 := prev.pos, vec{x, y} for i := 1; i < count; i++ { a0, a1 := p.p[i-1].pos, p.p[i].pos _, r1, r2 := lineIntersection(a0, a1, b0, b1) if r1 > 0 && r1 < 1 && r2 > 0 && r2 < 1 { cuts = true break } } } if cuts { newp.flags |= pathSelfIntersects } else { prev2 := &p.p[len(p.p)-3] cw := (newp.flags & pathIsClockwise) > 0 ln := prev.pos.sub(prev2.pos) lo := vec{ln[1], -ln[0]} dot := newp.pos.sub(prev2.pos).dot(lo) if (cw && dot <= 0) || (!cw && dot >= 0) { newp.flags |= pathIsConvex } } } } // Arc (see equivalent function on canvas type) func (p *Path2D) Arc(x, y, radius, startAngle, endAngle float64, anticlockwise bool) { checkSelfIntersection := len(p.p) > 0 lastWasMove := len(p.p) == 0 || p.p[len(p.p)-1].flags&pathMove != 0 if endAngle == startAngle { s, c := math.Sincos(endAngle) p.lineTo(x+radius*c, y+radius*s, checkSelfIntersection) if lastWasMove { p.p[len(p.p)-1].flags |= pathIsConvex } return } if (!anticlockwise && endAngle < startAngle) || (anticlockwise && endAngle > startAngle) { endAngle, startAngle = startAngle, endAngle } if !anticlockwise { diff := endAngle - startAngle if diff >= math.Pi*4 { diff = math.Mod(diff, math.Pi*2) + math.Pi*2 endAngle = startAngle + diff } } else { diff := startAngle - endAngle if diff >= math.Pi*4 { diff = math.Mod(diff, math.Pi*2) endAngle = startAngle - diff } } const step = math.Pi * 2 / 90 if !anticlockwise { for a := startAngle; a < endAngle; a += step { s, c := math.Sincos(a) p.lineTo(x+radius*c, y+radius*s, checkSelfIntersection) } } else { for a := startAngle; a > endAngle; a -= step { s, c := math.Sincos(a) p.lineTo(x+radius*c, y+radius*s, checkSelfIntersection) } } s, c := math.Sincos(endAngle) p.lineTo(x+radius*c, y+radius*s, checkSelfIntersection) if lastWasMove { p.p[len(p.p)-1].flags |= pathIsConvex } } // ArcTo (see equivalent function on canvas type) func (p *Path2D) ArcTo(x1, y1, x2, y2, radius float64) { if len(p.p) == 0 { return } p0, p1, p2 := p.p[len(p.p)-1].pos, vec{x1, y1}, vec{x2, y2} v0, v1 := p0.sub(p1).norm(), p2.sub(p1).norm() angle := math.Acos(v0.dot(v1)) // should be in the range [0-pi]. if parallel, use a straight line if angle <= 0 || angle >= math.Pi { p.LineTo(x2, y2) return } // cv0 and cv1 are vectors that point to the center of the circle cv0 := vec{-v0[1], v0[0]} cv1 := vec{v1[1], -v1[0]} x := cv1.sub(cv0).div(v0.sub(v1))[0] * radius if x < 0 { cv0 = cv0.mulf(-1) cv1 = cv1.mulf(-1) } center := p1.add(v0.mulf(math.Abs(x))).add(cv0.mulf(radius)) a0, a1 := cv0.mulf(-1).atan2(), cv1.mulf(-1).atan2() if x > 0 { if a1-a0 > 0 { a0 += math.Pi * 2 } } else { if a0-a1 > 0 { a1 += math.Pi * 2 } } p.Arc(center[0], center[1], radius, a0, a1, x > 0) } // QuadraticCurveTo (see equivalent function on canvas type) func (p *Path2D) QuadraticCurveTo(x1, y1, x2, y2 float64) { if len(p.p) == 0 { return } p0 := p.p[len(p.p)-1].pos p1 := vec{x1, y1} p2 := vec{x2, y2} v0 := p1.sub(p0) v1 := p2.sub(p1) const step = 0.01 for r := 0.0; r < 1; r += step { i0 := v0.mulf(r).add(p0) i1 := v1.mulf(r).add(p1) pt := i1.sub(i0).mulf(r).add(i0) p.LineTo(pt[0], pt[1]) } p.LineTo(x2, y2) } // BezierCurveTo (see equivalent function on canvas type) func (p *Path2D) BezierCurveTo(x1, y1, x2, y2, x3, y3 float64) { if len(p.p) == 0 { return } p0 := p.p[len(p.p)-1].pos p1 := vec{x1, y1} p2 := vec{x2, y2} p3 := vec{x3, y3} v0 := p1.sub(p0) v1 := p2.sub(p1) v2 := p3.sub(p2) const step = 0.01 for r := 0.0; r < 1; r += step { i0 := v0.mulf(r).add(p0) i1 := v1.mulf(r).add(p1) i2 := v2.mulf(r).add(p2) iv0 := i1.sub(i0) iv1 := i2.sub(i1) j0 := iv0.mulf(r).add(i0) j1 := iv1.mulf(r).add(i1) pt := j1.sub(j0).mulf(r).add(j0) p.LineTo(pt[0], pt[1]) } p.LineTo(x3, y3) } // ClosePath (see equivalent function on canvas type) func (p *Path2D) ClosePath() { if len(p.p) < 2 { return } if isSamePoint(p.p[len(p.p)-1].pos, p.p[0].pos, 0.1) { return } closeIdx := 0 for i := len(p.p) - 1; i >= 0; i-- { if p.p[i].flags&pathMove != 0 { closeIdx = i break } } p.LineTo(p.p[closeIdx].pos[0], p.p[closeIdx].pos[1]) p.p[len(p.p)-1].next = p.p[closeIdx].next p.p[len(p.p)-1].flags |= pathAttach } // Rect (see equivalent function on canvas type) func (p *Path2D) Rect(x, y, w, h float64) { lastWasMove := len(p.p) == 0 || p.p[len(p.p)-1].flags&pathMove != 0 p.MoveTo(x, y) p.LineTo(x+w, y) p.LineTo(x+w, y+h) p.LineTo(x, y+h) p.LineTo(x, y) if lastWasMove { p.p[len(p.p)-1].flags |= pathIsRect p.p[len(p.p)-1].flags |= pathIsConvex } } // func (p *Path2D) Ellipse(...) { // } func runSubPaths(path []pathPoint, fn func(subPath []pathPoint) bool) { start := 0 for i, p := range path { if p.flags&pathMove == 0 { continue } if i >= start+3 { if fn(path[start:i]) { return } } start = i } if len(path) >= start+3 { fn(path[start:]) } } type pathRule uint8 // Path rule constants. See https://en.wikipedia.org/wiki/Nonzero-rule // and https://en.wikipedia.org/wiki/Even%E2%80%93odd_rule const ( NonZero pathRule = iota EvenOdd ) // IsPointInPath returns true if the point is in the path according // to the given rule func (p *Path2D) IsPointInPath(x, y float64, rule pathRule) bool { inside := false runSubPaths(p.p, func(sp []pathPoint) bool { num := 0 prev := sp[len(sp)-1].pos for _, pt := range p.p { r, dir := pointIsRightOfLine(prev, pt.pos, vec{x, y}) prev = pt.pos if !r { continue } if dir { num++ } else { num-- } } if rule == NonZero { inside = num != 0 } else { inside = num%2 == 0 } return inside }) return inside } // IsPointInStroke returns true if the point is in the stroke func (p *Path2D) IsPointInStroke(x, y float64) bool { if len(p.p) == 0 { return false } var triBuf [500][2]float64 tris := p.cv.strokeTris(p, mat{}, false, triBuf[:0]) pt := vec{x, y} for i := 0; i < len(tris); i += 3 { a := vec{tris[i][0], tris[i][1]} b := vec{tris[i+1][0], tris[i+1][1]} c := vec{tris[i+2][0], tris[i+2][1]} if triangleContainsPoint(a, b, c, pt) { return true } } return false }