canvas/paths.go
2019-02-22 16:38:27 +01:00

673 lines
18 KiB
Go

package canvas
import (
"math"
"unsafe"
)
// BeginPath clears the current path and starts a new one
func (cv *Canvas) BeginPath() {
if cv.path.p == nil {
cv.path.p = make([]pathPoint, 0, 100)
}
cv.path.p = cv.path.p[:0]
}
func isSamePoint(a, b vec, maxDist float64) bool {
return math.Abs(b[0]-a[0]) <= maxDist && math.Abs(b[1]-a[1]) <= maxDist
}
// MoveTo adds a gap and moves the end of the path to x/y
func (cv *Canvas) MoveTo(x, y float64) {
tf := cv.tf(vec{x, y})
cv.path.MoveTo(tf[0], tf[1])
}
// LineTo adds a line to the end of the path
func (cv *Canvas) LineTo(x, y float64) {
tf := cv.tf(vec{x, y})
cv.path.LineTo(tf[0], tf[1])
}
// Arc adds a circle segment to the end of the path. x/y is the center, radius
// is the radius, startAngle and endAngle are angles in radians, anticlockwise
// means that the line is added anticlockwise
func (cv *Canvas) Arc(x, y, radius, startAngle, endAngle float64, anticlockwise bool) {
tf := cv.tf(vec{x, y})
ax, ay := math.Sincos(startAngle)
startAngle2 := vec{ay, ax}.mulMat2(cv.state.transform.mat2()).atan2()
endAngle2 := startAngle2 + (endAngle - startAngle)
cv.path.Arc(tf[0], tf[1], radius, startAngle2, endAngle2, anticlockwise)
}
// ArcTo adds to the current path by drawing a line toward x1/y1 and a circle
// segment of a radius given by the radius parameter. The circle touches the
// lines from the end of the path to x1/y1, and from x1/y1 to x2/y2. The line
// will only go to where the circle segment would touch the latter line
func (cv *Canvas) ArcTo(x1, y1, x2, y2, radius float64) {
tf1 := cv.tf(vec{x1, y1})
tf2 := cv.tf(vec{x2, y2})
cv.path.ArcTo(tf1[0], tf1[1], tf2[0], tf2[1], radius)
}
// QuadraticCurveTo adds a quadratic curve to the path. It uses the current end
// point of the path, x1/y1 defines the curve, and x2/y2 is the end point
func (cv *Canvas) QuadraticCurveTo(x1, y1, x2, y2 float64) {
tf1 := cv.tf(vec{x1, y1})
tf2 := cv.tf(vec{x2, y2})
cv.path.QuadraticCurveTo(tf1[0], tf1[1], tf2[0], tf2[1])
}
// BezierCurveTo adds a bezier curve to the path. It uses the current end point
// of the path, x1/y1 and x2/y2 define the curve, and x3/y3 is the end point
func (cv *Canvas) BezierCurveTo(x1, y1, x2, y2, x3, y3 float64) {
tf1 := cv.tf(vec{x1, y1})
tf2 := cv.tf(vec{x2, y2})
tf3 := cv.tf(vec{x3, y3})
cv.path.BezierCurveTo(tf1[0], tf1[1], tf2[0], tf2[1], tf3[0], tf3[1])
}
// ClosePath closes the path to the beginning of the path or the last point
// from a MoveTo call
func (cv *Canvas) ClosePath() {
cv.path.ClosePath()
}
// Stroke uses the current StrokeStyle to draw the current path
func (cv *Canvas) Stroke() {
cv.strokePath(&cv.path)
}
// StrokePath uses the current StrokeStyle to draw the given path
func (cv *Canvas) StrokePath(path *Path2D) {
path2 := Path2D{
p: make([]pathPoint, len(path.p)),
}
// todo avoid allocation
for i, pt := range path.p {
path2.p[i].pos = cv.tf(pt.pos)
path2.p[i].next = cv.tf(pt.next)
path2.p[i].flags = pt.flags
}
cv.strokePath(&path2)
}
func (cv *Canvas) strokePath(path *Path2D) {
if len(path.p) == 0 {
return
}
cv.activate()
dashedPath := cv.applyLineDash(path.p)
var triBuf [1000]float32
tris := triBuf[:0]
tris = append(tris, 0, 0, float32(cv.fw), 0, float32(cv.fw), float32(cv.fh), 0, 0, float32(cv.fw), float32(cv.fh), 0, float32(cv.fh))
start := true
var p0 vec
for _, p := range dashedPath {
if p.flags&pathMove != 0 {
p0 = p.pos
start = true
continue
}
p1 := p.pos
v0 := p1.sub(p0).norm()
v1 := vec{v0[1], -v0[0]}.mulf(cv.state.lineWidth * 0.5)
v0 = v0.mulf(cv.state.lineWidth * 0.5)
lp0 := p0.add(v1)
lp1 := p1.add(v1)
lp2 := p0.sub(v1)
lp3 := p1.sub(v1)
if start {
switch cv.state.lineCap {
case Butt:
// no need to do anything
case Square:
lp0 = lp0.sub(v0)
lp2 = lp2.sub(v0)
case Round:
tris = cv.addCircleTris(p0, cv.state.lineWidth*0.5, tris)
}
}
if p.flags&pathAttach == 0 {
switch cv.state.lineCap {
case Butt:
// no need to do anything
case Square:
lp1 = lp1.add(v0)
lp3 = lp3.add(v0)
case Round:
tris = cv.addCircleTris(p1, cv.state.lineWidth*0.5, tris)
}
}
tris = append(tris,
float32(lp0[0]), float32(lp0[1]), float32(lp1[0]), float32(lp1[1]), float32(lp3[0]), float32(lp3[1]),
float32(lp0[0]), float32(lp0[1]), float32(lp3[0]), float32(lp3[1]), float32(lp2[0]), float32(lp2[1]))
if p.flags&pathAttach != 0 && cv.state.lineWidth > 1 {
tris = cv.lineJoint(p, p0, p1, p.next, lp0, lp1, lp2, lp3, tris)
}
p0 = p1
start = false
}
gli.BindBuffer(gl_ARRAY_BUFFER, buf)
gli.BufferData(gl_ARRAY_BUFFER, len(tris)*4, unsafe.Pointer(&tris[0]), gl_STREAM_DRAW)
cv.drawShadow(tris)
gli.BindBuffer(gl_ARRAY_BUFFER, buf)
if cv.state.globalAlpha >= 1 && cv.state.lineAlpha >= 1 && cv.state.stroke.isOpaque() {
vertex := cv.useShader(&cv.state.stroke)
gli.EnableVertexAttribArray(vertex)
gli.VertexAttribPointer(vertex, 2, gl_FLOAT, false, 0, 0)
gli.DrawArrays(gl_TRIANGLES, 6, int32(len(tris)/2-6))
gli.DisableVertexAttribArray(vertex)
} else {
gli.ColorMask(false, false, false, false)
gli.StencilFunc(gl_ALWAYS, 1, 0xFF)
gli.StencilOp(gl_REPLACE, gl_REPLACE, gl_REPLACE)
gli.StencilMask(0x01)
gli.UseProgram(sr.id)
gli.Uniform4f(sr.color, 0, 0, 0, 0)
gli.Uniform2f(sr.canvasSize, float32(cv.fw), float32(cv.fh))
gli.EnableVertexAttribArray(sr.vertex)
gli.VertexAttribPointer(sr.vertex, 2, gl_FLOAT, false, 0, 0)
gli.DrawArrays(gl_TRIANGLES, 6, int32(len(tris)/2-6))
gli.DisableVertexAttribArray(sr.vertex)
gli.ColorMask(true, true, true, true)
gli.StencilFunc(gl_EQUAL, 1, 0xFF)
origAlpha := cv.state.globalAlpha
if cv.state.lineAlpha < 1 {
cv.state.globalAlpha *= cv.state.lineAlpha
}
vertex := cv.useShader(&cv.state.stroke)
cv.state.globalAlpha = origAlpha
gli.EnableVertexAttribArray(vertex)
gli.VertexAttribPointer(vertex, 2, gl_FLOAT, false, 0, 0)
gli.DrawArrays(gl_TRIANGLES, 0, 6)
gli.DisableVertexAttribArray(vertex)
gli.StencilOp(gl_KEEP, gl_KEEP, gl_KEEP)
gli.StencilFunc(gl_ALWAYS, 0, 0xFF)
gli.Clear(gl_STENCIL_BUFFER_BIT)
gli.StencilMask(0xFF)
}
}
func (cv *Canvas) applyLineDash(path []pathPoint) []pathPoint {
if len(cv.state.lineDash) < 2 || len(path) < 2 {
return path
}
ldo := cv.state.lineDashOffset
ldp := cv.state.lineDashPoint
path2 := make([]pathPoint, 0, len(path)*2)
var lp pathPoint
for i, pp := range path {
if i == 0 || pp.flags&pathMove != 0 {
path2 = append(path2, pp)
lp = pp
continue
}
v := pp.pos.sub(lp.pos)
vl := v.len()
prev := ldo
for vl > 0 {
draw := ldp%2 == 0
newp := pathPoint{pos: pp.pos}
ldo += vl
if ldo > cv.state.lineDash[ldp] {
ldo = 0
dl := cv.state.lineDash[ldp] - prev
dist := dl / vl
newp.pos = lp.pos.add(v.mulf(dist))
vl -= dl
ldp++
ldp %= len(cv.state.lineDash)
prev = 0
} else {
vl = 0
}
if draw {
path2[len(path2)-1].next = newp.pos
path2[len(path2)-1].flags |= pathAttach
path2 = append(path2, newp)
} else {
newp.flags = pathMove
path2 = append(path2, newp)
}
lp = newp
v = pp.pos.sub(lp.pos)
}
lp = pp
}
return path2
}
func (cv *Canvas) lineJoint(p pathPoint, p0, p1, p2, l0p0, l0p1, l0p2, l0p3 vec, tris []float32) []float32 {
v2 := p1.sub(p2).norm()
v3 := vec{v2[1], -v2[0]}.mulf(cv.state.lineWidth * 0.5)
switch cv.state.lineJoin {
case Miter:
l1p0 := p2.sub(v3)
l1p1 := p1.sub(v3)
l1p2 := p2.add(v3)
l1p3 := p1.add(v3)
var ip0, ip1 vec
if l0p1.sub(l1p1).lenSqr() < 0.000000001 {
ip0 = l0p1.sub(l1p1).mulf(0.5).add(l1p1)
} else {
var q float64
ip0, _, q = lineIntersection(l0p0, l0p1, l1p1, l1p0)
if q >= 1 {
ip0 = l0p1.add(l1p1).mulf(0.5)
}
}
if dist := ip0.sub(l0p1).lenSqr(); dist > cv.state.miterLimitSqr {
l1p1 := p1.sub(v3)
l1p3 := p1.add(v3)
tris = append(tris,
float32(p1[0]), float32(p1[1]), float32(l0p1[0]), float32(l0p1[1]), float32(l1p1[0]), float32(l1p1[1]),
float32(p1[0]), float32(p1[1]), float32(l1p3[0]), float32(l1p3[1]), float32(l0p3[0]), float32(l0p3[1]))
return tris
}
if l0p3.sub(l1p3).lenSqr() < 0.000000001 {
ip1 = l0p3.sub(l1p3).mulf(0.5).add(l1p3)
} else {
var q float64
ip1, _, q = lineIntersection(l0p2, l0p3, l1p3, l1p2)
if q >= 1 {
ip1 = l0p3.add(l1p3).mulf(0.5)
}
}
if dist := ip1.sub(l1p1).lenSqr(); dist > cv.state.miterLimitSqr {
l1p1 := p1.sub(v3)
l1p3 := p1.add(v3)
tris = append(tris,
float32(p1[0]), float32(p1[1]), float32(l0p1[0]), float32(l0p1[1]), float32(l1p1[0]), float32(l1p1[1]),
float32(p1[0]), float32(p1[1]), float32(l1p3[0]), float32(l1p3[1]), float32(l0p3[0]), float32(l0p3[1]))
return tris
}
tris = append(tris,
float32(p1[0]), float32(p1[1]), float32(l0p1[0]), float32(l0p1[1]), float32(ip0[0]), float32(ip0[1]),
float32(p1[0]), float32(p1[1]), float32(ip0[0]), float32(ip0[1]), float32(l1p1[0]), float32(l1p1[1]),
float32(p1[0]), float32(p1[1]), float32(l1p3[0]), float32(l1p3[1]), float32(ip1[0]), float32(ip1[1]),
float32(p1[0]), float32(p1[1]), float32(ip1[0]), float32(ip1[1]), float32(l0p3[0]), float32(l0p3[1]))
case Bevel:
l1p1 := p1.sub(v3)
l1p3 := p1.add(v3)
tris = append(tris,
float32(p1[0]), float32(p1[1]), float32(l0p1[0]), float32(l0p1[1]), float32(l1p1[0]), float32(l1p1[1]),
float32(p1[0]), float32(p1[1]), float32(l1p3[0]), float32(l1p3[1]), float32(l0p3[0]), float32(l0p3[1]))
case Round:
tris = cv.addCircleTris(p1, cv.state.lineWidth*0.5, tris)
}
return tris
}
func (cv *Canvas) addCircleTris(center vec, radius float64, tris []float32) []float32 {
step := 6 / radius
if step > 0.8 {
step = 0.8
} else if step < 0.05 {
step = 0.05
}
p0 := vec{center[0], center[1] + radius}
for angle := step; angle <= math.Pi*2+step; angle += step {
s, c := math.Sincos(angle)
p1 := vec{center[0] + s*radius, center[1] + c*radius}
tris = append(tris,
float32(center[0]), float32(center[1]), float32(p0[0]), float32(p0[1]), float32(p1[0]), float32(p1[1]))
p0 = p1
}
return tris
}
func lineIntersection(a0, a1, b0, b1 vec) (vec, float64, float64) {
va := a1.sub(a0)
vb := b1.sub(b0)
if (va[0] == 0 && vb[0] == 0) || (va[1] == 0 && vb[1] == 0) || (va[0] == 0 && va[1] == 0) || (vb[0] == 0 && vb[1] == 0) {
return vec{}, float64(math.Inf(1)), float64(math.Inf(1))
}
d := va[1]*vb[0] - va[0]*vb[1]
if d == 0 {
return vec{}, float64(math.Inf(1)), float64(math.Inf(1))
}
p := (vb[1]*(a0[0]-b0[0]) - a0[1]*vb[0] + b0[1]*vb[0]) / d
var q float64
if vb[0] == 0 {
q = (a0[1] + p*va[1] - b0[1]) / vb[1]
} else {
q = (a0[0] + p*va[0] - b0[0]) / vb[0]
}
return a0.add(va.mulf(p)), p, q
}
// Fill fills the current path with the current FillStyle
func (cv *Canvas) Fill() {
cv.FillPath(&cv.path)
}
// FillPath fills the given path with the current FillStyle
func (cv *Canvas) FillPath(path *Path2D) {
if len(path.p) < 3 {
return
}
cv.activate()
var triBuf [1000]float32
tris := triBuf[:0]
tris = append(tris, 0, 0, float32(cv.fw), 0, float32(cv.fw), float32(cv.fh), 0, 0, float32(cv.fw), float32(cv.fh), 0, float32(cv.fh))
start := 0
for i, p := range path.p {
if p.flags&pathMove == 0 {
continue
}
if i >= start+3 {
tris = cv.appendSubPathTriangles(tris, path.p[start:i])
}
start = i
}
if len(path.p) >= start+3 {
tris = cv.appendSubPathTriangles(tris, path.p[start:])
}
if len(tris) == 0 {
return
}
gli.BindBuffer(gl_ARRAY_BUFFER, buf)
gli.BufferData(gl_ARRAY_BUFFER, len(tris)*4, unsafe.Pointer(&tris[0]), gl_STREAM_DRAW)
cv.drawShadow(tris)
gli.BindBuffer(gl_ARRAY_BUFFER, buf)
if cv.state.globalAlpha >= 1 && cv.state.lineAlpha >= 1 && cv.state.fill.isOpaque() {
vertex := cv.useShader(&cv.state.fill)
gli.EnableVertexAttribArray(vertex)
gli.VertexAttribPointer(vertex, 2, gl_FLOAT, false, 0, 0)
gli.DrawArrays(gl_TRIANGLES, 6, int32(len(tris)/2-6))
gli.DisableVertexAttribArray(vertex)
} else {
gli.ColorMask(false, false, false, false)
gli.StencilFunc(gl_ALWAYS, 1, 0xFF)
gli.StencilOp(gl_REPLACE, gl_REPLACE, gl_REPLACE)
gli.StencilMask(0x01)
gli.UseProgram(sr.id)
gli.Uniform4f(sr.color, 0, 0, 0, 0)
gli.Uniform2f(sr.canvasSize, float32(cv.fw), float32(cv.fh))
gli.EnableVertexAttribArray(sr.vertex)
gli.VertexAttribPointer(sr.vertex, 2, gl_FLOAT, false, 0, 0)
gli.DrawArrays(gl_TRIANGLES, 6, int32(len(tris)/2-6))
gli.DisableVertexAttribArray(sr.vertex)
gli.ColorMask(true, true, true, true)
gli.StencilFunc(gl_EQUAL, 1, 0xFF)
vertex := cv.useShader(&cv.state.fill)
gli.EnableVertexAttribArray(vertex)
gli.VertexAttribPointer(vertex, 2, gl_FLOAT, false, 0, 0)
gli.DrawArrays(gl_TRIANGLES, 0, 6)
gli.DisableVertexAttribArray(vertex)
gli.StencilOp(gl_KEEP, gl_KEEP, gl_KEEP)
gli.StencilFunc(gl_ALWAYS, 0, 0xFF)
gli.Clear(gl_STENCIL_BUFFER_BIT)
gli.StencilMask(0xFF)
}
}
func (cv *Canvas) appendSubPathTriangles(tris []float32, path []pathPoint) []float32 {
last := path[len(path)-1]
if last.flags&pathIsConvex != 0 {
p0, p1 := path[0].pos, path[1].pos
last := len(path)
for i := 2; i < last; i++ {
p2 := path[i].pos
tris = append(tris, float32(p0[0]), float32(p0[1]), float32(p1[0]), float32(p1[1]), float32(p2[0]), float32(p2[1]))
p1 = p2
}
} else if last.flags&pathSelfIntersects != 0 {
path = cv.cutIntersections(path)
tris = triangulatePath(path, tris)
} else {
tris = triangulatePath(path, tris)
}
return tris
}
// Clip uses the current path to clip any further drawing. Use Save/Restore to
// remove the clipping again
func (cv *Canvas) Clip() {
if len(cv.path.p) < 3 {
return
}
path := cv.path.p
for i := len(path) - 1; i >= 0; i-- {
if path[i].flags&pathMove != 0 {
path = path[i:]
break
}
}
cv.clip(path)
}
func (cv *Canvas) clip(path []pathPoint) {
if len(path) < 3 {
return
}
if path[len(path)-1].flags&pathIsRect != 0 {
cv.scissor(path)
return
}
cv.activate()
var triBuf [1000]float32
tris := triBuf[:0]
tris = append(tris, 0, 0, float32(cv.fw), 0, float32(cv.fw), float32(cv.fh), 0, 0, float32(cv.fw), float32(cv.fh), 0, float32(cv.fh))
baseLen := len(tris)
tris = triangulatePath(path, tris)
if len(tris) <= baseLen {
return
}
gli.BindBuffer(gl_ARRAY_BUFFER, buf)
gli.BufferData(gl_ARRAY_BUFFER, len(tris)*4, unsafe.Pointer(&tris[0]), gl_STREAM_DRAW)
gli.VertexAttribPointer(sr.vertex, 2, gl_FLOAT, false, 0, 0)
gli.UseProgram(sr.id)
gli.Uniform4f(sr.color, 1, 1, 1, 1)
gli.Uniform2f(sr.canvasSize, float32(cv.fw), float32(cv.fh))
gli.EnableVertexAttribArray(sr.vertex)
gli.ColorMask(false, false, false, false)
gli.StencilMask(0x04)
gli.StencilFunc(gl_ALWAYS, 4, 0x04)
gli.StencilOp(gl_REPLACE, gl_REPLACE, gl_REPLACE)
gli.DrawArrays(gl_TRIANGLES, 6, int32(len(tris)/2-6))
gli.StencilMask(0x02)
gli.StencilFunc(gl_EQUAL, 0, 0x06)
gli.StencilOp(gl_KEEP, gl_INVERT, gl_INVERT)
gli.DrawArrays(gl_TRIANGLES, 0, 6)
gli.StencilMask(0x04)
gli.StencilFunc(gl_ALWAYS, 0, 0x04)
gli.StencilOp(gl_ZERO, gl_ZERO, gl_ZERO)
gli.DrawArrays(gl_TRIANGLES, 0, 6)
gli.DisableVertexAttribArray(sr.vertex)
gli.ColorMask(true, true, true, true)
gli.StencilOp(gl_KEEP, gl_KEEP, gl_KEEP)
gli.StencilMask(0xFF)
gli.StencilFunc(gl_EQUAL, 0, 0xFF)
cv.state.clip = cv.path
cv.state.clip.p = make([]pathPoint, len(cv.path.p))
copy(cv.state.clip.p, cv.path.p)
}
func (cv *Canvas) scissor(path []pathPoint) {
tl, br := vec{math.MaxFloat64, math.MaxFloat64}, vec{}
for _, p := range path {
tl[0] = math.Min(p.pos[0], tl[0])
tl[1] = math.Min(p.pos[1], tl[1])
br[0] = math.Max(p.pos[0], br[0])
br[1] = math.Max(p.pos[1], br[1])
}
if cv.state.scissor.on {
tl[0] = math.Max(tl[0], cv.state.scissor.tl[0])
tl[1] = math.Max(tl[1], cv.state.scissor.tl[1])
br[0] = math.Min(br[0], cv.state.scissor.br[0])
br[1] = math.Min(br[1], cv.state.scissor.br[1])
}
if tl[0] >= br[0] || tl[1] >= br[1] {
tl, br = vec{}, vec{}
}
cv.state.scissor = scissor{tl: tl, br: br, on: true}
cv.applyScissor()
}
func (cv *Canvas) applyScissor() {
s := &cv.state.scissor
if s.on {
gli.Scissor(int32(s.tl[0]+0.5), int32(cv.fh-s.br[1]+0.5), int32(s.br[0]-s.tl[0]+0.5), int32(s.br[1]-s.tl[1]+0.5))
} else {
gli.Scissor(0, 0, int32(cv.w), int32(cv.h))
}
}
// Rect creates a closed rectangle path for stroking or filling
func (cv *Canvas) Rect(x, y, w, h float64) {
lastWasMove := len(cv.path.p) == 0 || cv.path.p[len(cv.path.p)-1].flags&pathMove != 0
cv.MoveTo(x, y)
cv.LineTo(x+w, y)
cv.LineTo(x+w, y+h)
cv.LineTo(x, y+h)
cv.LineTo(x, y)
if lastWasMove {
cv.path.p[len(cv.path.p)-1].flags |= pathIsRect
cv.path.p[len(cv.path.p)-1].flags |= pathIsConvex
}
}
// StrokeRect draws a rectangle using the current stroke style
func (cv *Canvas) StrokeRect(x, y, w, h float64) {
v0 := vec{x, y}
v1 := vec{x + w, y}
v2 := vec{x + w, y + h}
v3 := vec{x, y + h}
v0t, v1t, v2t, v3t := cv.tf(v0), cv.tf(v1), cv.tf(v2), cv.tf(v3)
var p [5]pathPoint
p[0] = pathPoint{pos: v0t, flags: pathMove | pathAttach, next: v1t}
p[1] = pathPoint{pos: v1t, next: v2, flags: pathAttach}
p[2] = pathPoint{pos: v2t, next: v3, flags: pathAttach}
p[3] = pathPoint{pos: v3t, next: v0, flags: pathAttach}
p[4] = pathPoint{pos: v0t, next: v1, flags: pathAttach}
path := Path2D{p: p[:]}
cv.strokePath(&path)
}
// FillRect fills a rectangle with the active fill style
func (cv *Canvas) FillRect(x, y, w, h float64) {
cv.activate()
p0 := cv.tf(vec{x, y})
p1 := cv.tf(vec{x, y + h})
p2 := cv.tf(vec{x + w, y + h})
p3 := cv.tf(vec{x + w, y})
if cv.state.shadowColor.a != 0 {
tris := [24]float32{
0, 0,
float32(cv.fw), 0,
float32(cv.fw), float32(cv.fh),
0, 0,
float32(cv.fw), float32(cv.fh),
0, float32(cv.fh),
float32(p0[0]), float32(p0[1]),
float32(p3[0]), float32(p3[1]),
float32(p2[0]), float32(p2[1]),
float32(p0[0]), float32(p0[1]),
float32(p2[0]), float32(p2[1]),
float32(p1[0]), float32(p1[1]),
}
cv.drawShadow(tris[:])
}
data := [4][2]float64{{p0[0], p0[1]}, {p1[0], p1[1]}, {p2[0], p2[1]}, {p3[0], p3[1]}}
stl := cv.backendStyle(&cv.state.fill)
cv.b.Fill(&stl, data)
}
// ClearRect sets the color of the rectangle to transparent black
func (cv *Canvas) ClearRect(x, y, w, h float64) {
cv.activate()
if cv.state.transform == matIdentity() {
cv.b.ClearRect(int(x+0.5), int(y+0.5), int(w+0.5), int(h+0.5))
cv.applyScissor()
return
}
p0 := cv.tf(vec{x, y})
p1 := cv.tf(vec{x, y + h})
p2 := cv.tf(vec{x + w, y + h})
p3 := cv.tf(vec{x + w, y})
data := [4][2]float64{{p0[0], p0[1]}, {p1[0], p1[1]}, {p2[0], p2[1]}, {p3[0], p3[1]}}
cv.b.Clear(data)
}