261 lines
6 KiB
Go
261 lines
6 KiB
Go
package canvas
|
|
|
|
import "math"
|
|
|
|
type Path2D struct {
|
|
p []pathPoint
|
|
move vec
|
|
cwSum float64
|
|
}
|
|
|
|
type pathPoint struct {
|
|
pos vec
|
|
next vec
|
|
flags pathPointFlag
|
|
}
|
|
|
|
type pathPointFlag uint8
|
|
|
|
const (
|
|
pathMove pathPointFlag = 1 << iota
|
|
pathAttach
|
|
pathIsRect
|
|
pathIsConvex
|
|
pathIsClockwise
|
|
pathSelfIntersects
|
|
)
|
|
|
|
// NewPath2D creates a new Path2D and returns it
|
|
func NewPath2D() *Path2D {
|
|
return &Path2D{p: make([]pathPoint, 0, 20)}
|
|
}
|
|
|
|
// func (p *Path2D) AddPath(p2 *Path2D) {
|
|
// }
|
|
|
|
// MoveTo (see equivalent function on canvas type)
|
|
func (p *Path2D) MoveTo(x, y float64) {
|
|
if len(p.p) > 0 && isSamePoint(p.p[len(p.p)-1].pos, vec{x, y}, 0.1) {
|
|
return
|
|
}
|
|
p.p = append(p.p, pathPoint{pos: vec{x, y}, flags: pathMove}) // todo more flags probably
|
|
p.cwSum = 0
|
|
p.move = vec{x, y}
|
|
}
|
|
|
|
// LineTo (see equivalent function on canvas type)
|
|
func (p *Path2D) LineTo(x, y float64) {
|
|
p.lineTo(x, y, true)
|
|
}
|
|
|
|
func (p *Path2D) lineTo(x, y float64, checkSelfIntersection bool) {
|
|
count := len(p.p)
|
|
if count > 0 && isSamePoint(p.p[len(p.p)-1].pos, vec{x, y}, 0.1) {
|
|
return
|
|
}
|
|
if count == 0 {
|
|
p.MoveTo(x, y)
|
|
return
|
|
}
|
|
prev := &p.p[count-1]
|
|
prev.next = vec{x, y}
|
|
prev.flags |= pathAttach
|
|
p.p = append(p.p, pathPoint{pos: vec{x, y}})
|
|
newp := &p.p[count]
|
|
|
|
px, py := prev.pos[0], prev.pos[1]
|
|
p.cwSum += (x - px) * (y + py)
|
|
cwTotal := p.cwSum
|
|
cwTotal += (p.move[0] - x) * (p.move[1] + y)
|
|
if cwTotal <= 0 {
|
|
newp.flags |= pathIsClockwise
|
|
}
|
|
|
|
if prev.flags&pathSelfIntersects > 0 {
|
|
newp.flags |= pathSelfIntersects
|
|
}
|
|
|
|
if len(p.p) < 4 || Performance.AssumeConvex {
|
|
newp.flags |= pathIsConvex
|
|
} else if prev.flags&pathIsConvex > 0 {
|
|
cuts := false
|
|
if checkSelfIntersection && !Performance.IgnoreSelfIntersections {
|
|
b0, b1 := prev.pos, vec{x, y}
|
|
for i := 1; i < count; i++ {
|
|
a0, a1 := p.p[i-1].pos, p.p[i].pos
|
|
_, r1, r2 := lineIntersection(a0, a1, b0, b1)
|
|
if r1 > 0 && r1 < 1 && r2 > 0 && r2 < 1 {
|
|
cuts = true
|
|
break
|
|
}
|
|
}
|
|
}
|
|
if cuts {
|
|
newp.flags |= pathSelfIntersects
|
|
} else {
|
|
prev2 := &p.p[len(p.p)-3]
|
|
cw := (newp.flags & pathIsClockwise) > 0
|
|
|
|
ln := prev.pos.sub(prev2.pos)
|
|
lo := vec{ln[1], -ln[0]}
|
|
dot := newp.pos.sub(prev2.pos).dot(lo)
|
|
|
|
if (cw && dot <= 0) || (!cw && dot >= 0) {
|
|
newp.flags |= pathIsConvex
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Arc (see equivalent function on canvas type)
|
|
func (p *Path2D) Arc(x, y, radius, startAngle, endAngle float64, anticlockwise bool) {
|
|
checkSelfIntersection := len(p.p) > 0
|
|
|
|
lastWasMove := len(p.p) == 0 || p.p[len(p.p)-1].flags&pathMove != 0
|
|
|
|
startAngle = math.Mod(startAngle, math.Pi*2)
|
|
if startAngle < 0 {
|
|
startAngle += math.Pi * 2
|
|
}
|
|
endAngle = math.Mod(endAngle, math.Pi*2)
|
|
if endAngle < 0 {
|
|
endAngle += math.Pi * 2
|
|
}
|
|
if !anticlockwise && endAngle <= startAngle {
|
|
endAngle += math.Pi * 2
|
|
} else if anticlockwise && endAngle >= startAngle {
|
|
endAngle -= math.Pi * 2
|
|
}
|
|
const step = math.Pi * 2 / 360
|
|
if anticlockwise {
|
|
for a := startAngle; a > endAngle; a -= step {
|
|
s, c := math.Sincos(a)
|
|
p.lineTo(x+radius*c, y+radius*s, checkSelfIntersection)
|
|
}
|
|
} else {
|
|
for a := startAngle; a < endAngle; a += step {
|
|
s, c := math.Sincos(a)
|
|
p.lineTo(x+radius*c, y+radius*s, checkSelfIntersection)
|
|
}
|
|
}
|
|
s, c := math.Sincos(endAngle)
|
|
p.lineTo(x+radius*c, y+radius*s, checkSelfIntersection)
|
|
|
|
if lastWasMove {
|
|
p.p[len(p.p)-1].flags |= pathIsConvex
|
|
}
|
|
}
|
|
|
|
// ArcTo (see equivalent function on canvas type)
|
|
func (p *Path2D) ArcTo(x1, y1, x2, y2, radius float64) {
|
|
if len(p.p) == 0 {
|
|
return
|
|
}
|
|
p0, p1, p2 := p.p[len(p.p)-1].pos, vec{x1, y1}, vec{x2, y2}
|
|
v0, v1 := p0.sub(p1).norm(), p2.sub(p1).norm()
|
|
angle := math.Acos(v0.dot(v1))
|
|
// should be in the range [0-pi]. if parallel, use a straight line
|
|
if angle <= 0 || angle >= math.Pi {
|
|
p.LineTo(x2, y2)
|
|
return
|
|
}
|
|
// cv are the vectors orthogonal to the lines that point to the center of the circle
|
|
cv0 := vec{-v0[1], v0[0]}
|
|
cv1 := vec{v1[1], -v1[0]}
|
|
x := cv1.sub(cv0).div(v0.sub(v1))[0] * radius
|
|
if x < 0 {
|
|
cv0 = cv0.mulf(-1)
|
|
cv1 = cv1.mulf(-1)
|
|
}
|
|
center := p1.add(v0.mulf(math.Abs(x))).add(cv0.mulf(radius))
|
|
a0, a1 := cv0.mulf(-1).atan2(), cv1.mulf(-1).atan2()
|
|
p.Arc(center[0], center[1], radius, a0, a1, x > 0)
|
|
}
|
|
|
|
// QuadraticCurveTo (see equivalent function on canvas type)
|
|
func (p *Path2D) QuadraticCurveTo(x1, y1, x2, y2 float64) {
|
|
if len(p.p) == 0 {
|
|
return
|
|
}
|
|
p0 := p.p[len(p.p)-1].pos
|
|
p1 := vec{x1, y1}
|
|
p2 := vec{x2, y2}
|
|
v0 := p1.sub(p0)
|
|
v1 := p2.sub(p1)
|
|
|
|
const step = 0.01
|
|
|
|
for r := 0.0; r < 1; r += step {
|
|
i0 := v0.mulf(r).add(p0)
|
|
i1 := v1.mulf(r).add(p1)
|
|
pt := i1.sub(i0).mulf(r).add(i0)
|
|
p.LineTo(pt[0], pt[1])
|
|
}
|
|
p.LineTo(x2, y2)
|
|
}
|
|
|
|
// BezierCurveTo (see equivalent function on canvas type)
|
|
func (p *Path2D) BezierCurveTo(x1, y1, x2, y2, x3, y3 float64) {
|
|
if len(p.p) == 0 {
|
|
return
|
|
}
|
|
p0 := p.p[len(p.p)-1].pos
|
|
p1 := vec{x1, y1}
|
|
p2 := vec{x2, y2}
|
|
p3 := vec{x3, y3}
|
|
v0 := p1.sub(p0)
|
|
v1 := p2.sub(p1)
|
|
v2 := p3.sub(p2)
|
|
|
|
const step = 0.01
|
|
|
|
for r := 0.0; r < 1; r += step {
|
|
i0 := v0.mulf(r).add(p0)
|
|
i1 := v1.mulf(r).add(p1)
|
|
i2 := v2.mulf(r).add(p2)
|
|
iv0 := i1.sub(i0)
|
|
iv1 := i2.sub(i1)
|
|
j0 := iv0.mulf(r).add(i0)
|
|
j1 := iv1.mulf(r).add(i1)
|
|
pt := j1.sub(j0).mulf(r).add(j0)
|
|
p.LineTo(pt[0], pt[1])
|
|
}
|
|
p.LineTo(x3, y3)
|
|
}
|
|
|
|
// ClosePath (see equivalent function on canvas type)
|
|
func (p *Path2D) ClosePath() {
|
|
if len(p.p) < 2 {
|
|
return
|
|
}
|
|
if isSamePoint(p.p[len(p.p)-1].pos, p.p[0].pos, 0.1) {
|
|
return
|
|
}
|
|
closeIdx := 0
|
|
for i := len(p.p) - 1; i >= 0; i-- {
|
|
if p.p[i].flags&pathMove != 0 {
|
|
closeIdx = i
|
|
break
|
|
}
|
|
}
|
|
p.LineTo(p.p[closeIdx].pos[0], p.p[closeIdx].pos[1])
|
|
p.p[len(p.p)-1].next = p.p[closeIdx].next
|
|
p.p[len(p.p)-1].flags |= pathAttach
|
|
}
|
|
|
|
// Rect (see equivalent function on canvas type)
|
|
func (p *Path2D) Rect(x, y, w, h float64) {
|
|
lastWasMove := len(p.p) == 0 || p.p[len(p.p)-1].flags&pathMove != 0
|
|
p.MoveTo(x, y)
|
|
p.LineTo(x+w, y)
|
|
p.LineTo(x+w, y+h)
|
|
p.LineTo(x, y+h)
|
|
p.LineTo(x, y)
|
|
if lastWasMove {
|
|
p.p[len(p.p)-1].flags |= pathIsRect
|
|
p.p[len(p.p)-1].flags |= pathIsConvex
|
|
}
|
|
}
|
|
|
|
// func (p *Path2D) Ellipse(...) {
|
|
// }
|